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Abstract Monitoring crop growth or calibrating crop models with satellite remote sensing require too frequent data
to rely on high space resolution satellites only. Coarse resolution sateliites provide more frequent data, but their space
resalution is teo poor to allocate radiometric data to specific crops, specially when field size is comparatively small,
as it is the case in West Europe agricultural systems. This paper proposes a scheme of use for such coarse data in the
frame of the Preparatory Programme of VEGETATION sensor to be launched. A map of land use is first derived from
high resolution data (from sPoT satellite for instance) with ail wavebands at few dates (generally three} and provides
the percent cover of each crop in coarser pixels. Because the radiometric value in a coarse pixel is a2 weighted mean of
the radiometric response of individual components, the reflectance of a specific crop inside each pixel is predicted by a
model which unmixes coarse resolution values and reflectance of each crop is thus predicted at each available date of
satellite observation. A time profile of Normalized Difference Vegetation Index (1DV1) is thus established for each crop.
NDVis being transformed into Leaf Area Indices (LAI), parameters of a simple model of time evolution of each crop
can be estimated in each pixel with non linear regression. A synthesis of crop evoluticn can then be obtained when
projecting values of estimated parameters on a map of the observed area. Knowledge of crop parameter distribution
and space pattern at a regional scale is a first step o analyse the extension and behaviour of agricultural systems.

1 INTRODUCTION gion {Fischer {1994]; Faivre and Fischer {1997]). Combi-
ning low- and high-resoiution scenes from different plat-
forms induces other negative by-products, such as lack
of (i} radiometric compatibility {bandwidths are gene-
rally different) and (ii} geometric coherence (how accu-
rate is superimposition of two images from different ori-
gins and resclutions?). A new platform to be launched
in 1998 could partially overcome these drawbacks by
operating a low-resolution sensor {VEGETATION) and a
high-resolution one (sPoT4) with common bandwidths
and coramon geometry (at least in the centre of the
swath}. Such features are expected to Improve the re-
trieval of frequent high-resolution information.

Satellite monitoring of crops and crop yields requires in-
formation at an adeguate space resolution and adequate
time frequency. Space resolution must allow retrieval of
crop-specific radiometric values (i} directly, with high-
resolution scenes where elementary information (pixel)
is significantly smaller (20x20 m? to 100x100 m*) than
agricultural flelds (‘pure pixels’) and gives access to
within-field variability, and to monitering on a per-field
basis, or (ii) indirectly with coarse resolution images
where pixeis (1 to 100 &m?) contain from several to

many individual fields : the radiomeiric information in
each pixel is then a mixture of elementary signals from Another important issue is that adequate satellite mo-
elementary fields, i.e. a mixture of signals from various nitoring of intensive agriculture requires both remotely
crops in most cases (‘mixed pixels’). Time frequency of sensed information and crop simulation models (Delé-
information is adequate if it gives access to important colle ef al. {1992]), Incorporating satellite data into such
changes in crop behaviour. Changes in time profiles of models on a field basis has been reasonably well addres-
crop state variables can be related to water or patho- sed at the moment, but methodologies for a regional

logic stresses or to ontogenetic events which in both approach are still to be produced, both because coarse
cases are worth being considered. Unfortunately high resolution images mast be used (cf. supra) and because
ground resolution and high time frequency have so far crop models which would adopt regional inputs and pre-
been incompatible on present satellites. One is therefore serve basic conditions for incorporating remotely sensed
compelled to retrieve (‘unmix’} crop-specific informa- data do not still exist.

tion from signals mixed in coarse pixels, using some in- This paper is devoted tc demonstrate methodologies
dication on land use in these pixels as it is derived from to (1) unmix coarse resolution information and retrieve
scarce high-resolution scenes available over the same re- both mean values and variabilities of individual crop

228



signals over a region and (1t} incorporate this informa-
tion into a simple model of time evolution for leaf area
index (which is a significant variables in crop models)
and study the regional patiern of crop behaviour by
values of the parameters in the model on

mapping th
a per-field basals.

2 DATA AND MAP OF LAND USE

Cur methedologies were ilusirated on a test-site where
an adeqguate database is available, as established and
described by Guérif et ol [1992]: the Camargue area.
This is located in Boutheast France and its approximate
size is 15x10 krn®, During season 1986-10987, nine spoT
scenes were acouired in order to analyse the time evo-
lution of optical characteristics for major crops in the
area (wheat, rice, sunflower) in the visible and near-
infrared wavebands. Normalised Difference Vegetation
tndex (NDVI) was computed on a pixel basis {20%20 m?)
from red and near infra-red reflactances provided by
SPOT data. All pixels were classified into themes of land
use {major crops, water, marshes, forest, others) by a
maximuin likelihood classification based on NDVT values
for three dates. A segmentation of the agricultural area
into agricultural fields was obtained by hand-drawing
field contours from a high-scale map and comparing by

5. A land use map on a field basis
two previous steps, as displayed

eve with satellite
was derived from ¥
in Figure L

Camargue land use map.
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A grid whose mesh size is the same as VEGETATION
pixels was identically drawn on each SPOT scene and
VEGETATION convolution kernels were used to compute
red and infra-red synthetic reflectance per mesh. VE-
GETATION pseudo-scenes were thus generated from ini-
tial sPOT scenes. A dataset was designed to contain
(i) synthetic reflectances and derived NDVI at VEGETA-
710N scale and {ii) land use of each VEGETATION pixel
(percent area of each theme present in the pixel, as com-
puted on a SPOT-pixel basis}. Seven themes of land use
were identified. Over the 192 VEGETATION pixels, land
uge is: wheat (23 %), rice (17.8 %), sunflower (10.2 %),
water (8.7 %}, forests {11.4 %)}, cities (17.6 %), marsh-
tands (11.83 %).

3 UNMIXING THE REFLECTANCE

Faivre and Fischer [1997] proposed a statistical model-
ling of such satellite data to predict information rela-
tive to crops observed through mixed pixels. At a given
time and restricted to a homogeneous agro-climatic re-
gion, this model assurnes that reflectances of the same
theme (such as wheat, rice, forests, ...) are distributed
as (Gaussian with parameters depending on the theme.
At each date and for each channel, conditional on the
percentage of land occupation which is assumed to be
known, we wrote a linear model with random compo-
nents.

Let p be the number of themes, 25 be the proportion
of theme k in pixel 7, ¥i 35, z¥ = 1 and ¥; be
the observed value on pixel i at one date and for one
channel. If R¥ is the unknown response of theme £ in
the pixel ¢, we model observed Y} as

P
Yi o= Z.’L‘fﬁf £
k=1

~ Jﬁv‘(gﬁc| O’}%)

{1)
RE

1

where £; 1s the measurement error that we assumed
to be identically and independently distributed: #; ~
N{0,02).

Under hypotheses of intra and inter pixel independences
betwesn R, parameters in model 1 were estimated using
a maximum likelihood procedure. Figure 2 shows evo-
lution of the three channels plus NDvI values for the
seven components.

We then used the BLup (Henderson [1975]), best linear
unbiased prediction of the individual variations of re-
flectances inside the region. Conditicnal on the obser-
ved reflectance Y; on the mixed pixel 7, BLUP(RY) is,
using the estimated variance parameters,

RE =8+ 2k [y - X6 )
7

The deviations ¥; — X6 between observed and fitted
values were decomposed into deviations due to the dif-
ferent themes depending on land use in the pixel and
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FiG. 2 - Estimated profiles of numerical counts over the 10
dates for the 3 channels (near-infrared, red and green)} plus
NDVI and for the 7 themes: I-wheat, Z-rice, S-sunflower,
4-water, 5-forcsts, B-cities, 7-marshlands.

on the natural variation of the themes over the image,
the greater the percentage or the variance of the theme,
the more important the correction (relative to the de-
viation).

For each date, for each channel and for each theme, a
map of predicted values was drawn (Figure 3). KIR and
R being the predicted numerical counts in the near-
mfrared and red wavebands, we calculated the corre-
ponding predicted NDVI values as the ratio NDVi =

NiR — R
MR4+R

4 DYNAMIC MODELLING of CROP RES-
PONSE

For each pixel, it was then possible to analyse the evo-
lution of predicted NDvis for all themes. In the case of
rice, Figure 4 illustrates an interesting feature of the re-
sults obtained for almost all themes. For several dates,
NDvIs predicted at pixel level exhibited a range of va-
lues, as for the rest of time, predicted values were iden-
tical for all pixeis. The explanation was to be found in
the procedure of estimation. When a theme is not suffi-
ciently variable {with respect to other components), ¢?
estimation is very close to 0. Thus, we predict for the
rice at any pixel (see 2) the estimated mean value.

We used a canopy radiation fransfer model for repro-
duce the interaction between crop vegetation canopy
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Fig. 3 - Predicted map of NDVI on April, 15th for Wheat,
Rice, Sunflower and Forests; highest values in black, lowest

in white,
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Fig. 4 - Predicted profiles of NDV1 for pizels where percent
rice areq i greater than 80 %; M stands for mean estimated

value.



and incoming radiation {only short wavelengths are ad-
dressed here) and thus allow to switch in both ways
from canopy state variables (Leaf Area Index, LAl) to
satellite-derived values (reflectances then Vegetation In-
dices NDVIs).

We use a conversion function g from Lal to NDVI =
G(LAI) = NDVI,o51 + (NDVimaz ~NDVI,oi)# (1 —g ™o LAT
where o is an extinction coeflicient depending on vege-
tation phase {from .94 during the green-up to .41 at se-
nescencej. In our condition, maximum vegetation index
for rice is NDVimae = 0.9, and soil index is NDVI,gy =
0.15.

Lal evolution described as a function of time was ex-
pressed in sum of degree-days and of different parame-
ters. Baret [1986] used a summation of two exponential
functions: a first one for the development phase and a
second one for the senescence phase.

1 - eb*(ﬁ-f;')}

Lal(t. ) = kx| T

with the constraint that ¢; = log(1 + ezpla = i;))/b and
AT = (k,a,b,t).

A least-square procedure was used to estimate parame-
ter 4. We have two possible objective functions. The
first one is the sum of the mean squared errors calcu-
lated between observed predicted NDVI and fitied NDVI
(as g(ra1)). The second cone is the sum of the mean
squared errors calculated between observed predicted
LAl (as g~ (vDVI)) and fitted LAL We used a third one
combining both strategies. The three objective criteria
are:

2

Cxovild) = 3 lgltas(z, 8)) — voviz)]
Coald) = 5 [aile, 8) - g~ (NDVI2))]
cE) = CJ':LA;(;@) + 7 x Cnpvi(f)
with T = 2 . This estimation proce-

TNDVT e - NDVE 0] i
dure was performed for each pixel.

5 RESULT ANALYSIS and DISCUSSION

Histograms of estimated parameter values are presen-
ted for rice in Figure 5. No special feature can be obser-
ved except the very concentrated distributions for the
four parameters. This is not surprising because a large
number of the 192 estimated values are very close. From
these pixels, 16 did not contain any rice and almost one
hundred contained less than 10 percent. Using correc-
tion formula {2), ne or almost no correction was applied
to the mean estimated value. So the rice predicted va-
lues were almost similar and as a consequence, the LAl
parameters were identically estimated.

Considering pixels with high value of rice percent area,
estimated parameters were quite different. Estimated
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shapes of LAl time profile are presented in Figure 6.
LAl shape is highly sensitive to parameter values. A
small variation in estimated value produces contrasted
shapes. Meanwhile, estimation for the four parameters
was done with only six dates. The precision of estima-
ted parameters was low. We need a broader study with
more measurement dates before any further conclusion.

Figure 7 displays maps of values for parameters (#} of
the rice crop over the area. The space pattern of any
parameter does not reveal strong structures, even if the
MNorthern part of the area slightly contrasts with the
Southern part by higher values of parameters K, a %
and b, and lower values of parameter ¢;. This can care-
fully be interpreted by more vigorous growth and earlier
senescence, probably linked with earlier sowing dates,
particular genotypes and/or specific fertilisation stra-
tegy. One can also observe that the space patterns of the
first four parameters are very similas, revealing likely
high empirical correlations between parameters which
could question the real flexibility of our LAl time mo-
del. To validate or unvalidate our approach, we need to
apply the same process to another region and/or theme
where the range of agricultural practices is wider. An
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FiGg. 7~ Regional map of LAl estimated paremeters and of
rice land use for pirels which contained least 20 % rice.

interesting issue of our approach couid be to compare
the results of LAl model calibration by using vEGfTa-
TIoN and SPOT data respectively: VEGETATION data
are simulated from spoT data. On Figure 8, we notice
the randomness of sPoT data for the same agricultu-
ral field: is-it due to misciassification? Estimated time
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MDVI

profile using VEGETATION data agrees with estimated
shapes based on $POT data: VEGETATION-based estima-
ted time profile seems fo be in the range of sPOT-based
estimated profiles. Only one coarse pixel is presented
here: a more complete analysis should be done.
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F1G. 8 - Comparison between sPOT and YEGETATION scales
on the NDVI and LAI esttmaied curves. Unmired NDVI and
LAl values €& and the corresponding estimated curves {solid
and bold lines) for one coorse VEGETATION pizel Original
SPOT data {small letters a, b, ¢ and d) for the four agri-
cultural rice fields within the same pizel. 4, B, C and 0
correspond to the mean SPOT values and dotted lines fo os-
timated curyes.

6 COMMENTS

From a statistical point of view, model (1) and predic-
tion formula (2) can be lmproved by taking into account
intra-pixel correlations of themes,

As we noticed above, estimaled time profiles should
be replaced by estimated confidence bands. Anyway a
complete analysis should be done to point out informa-
tion losses due to upscaling. An interesting work would
be to appreciate the balance between gains in time fre-
quency and losses in space resolution given by VEGE-
TATION sensor as compared {o SPOT.

Nevertheless, our goal was to demonstrate a methodo-
logy to incorporate unmixed coarse resolution data into
a simple model of time evolution at a reglonal scale.
Sets of coefficient maps as exemplified by Figure 7 give a
comprehansive view of crop behaviour in terms of space
and time. They must be analysed vis-a-vis of the various
knowledge of underlying high-resolution reality (land
use as well as soil maps) and when compared with equi-
valent maps obtained at field scale from high-resolution
scenes, they will help to quantify the effect of upscaling.
They alsc are clues of homogeneity or patchiness of the
observable resultant of some (genctype x environment



x crop management) interaction. In this sense, they are
efficient tools for approaching, quantifying and descri-
bing the extension and intricacy of cropping systems
over large areas,

Another way to interpret results of such multiple esti-
mations is, regardless of their spatial pattern, to charac-
terise the whole region by empirical distributions of va-
lues for each parameter and empirical covariances bet-
ween parameters. The latter give information on pos-
sible links between agriculturally meaningful features
(e.g. genotype earliness, sowing date, maximum deve-
lopment of vegetation, date of maturity), and can in
turn be interpreted in terms of agricultural systems.

7 ACKNOWLEDGMENT

Part of this work was subsidized by the vEGETATION
Preparatory Programuime.

& REFERENCES

Baret, F., Contribution au suivi radiométrique de cul-
tures de céréales. Thése d'Université, Université de
Paris-Sud Orsay (France) 182pp, 19885,

Delécolle R., §.J. Maas, M. Guérif and F. Baret, Re-
mote sensing and crop production models: present
trends. ISPRS Journal of Photogrammetry and Re-
mote Sensing, (47) 145-161, 1992.

Faivre R. and A, Fischer, Predicting crops reflectance
using satellite data observing mixed pixels. Journal
of Agricultural, Biological, and Environmental Sta-
tistics, Volume 2, Number 1, Pages 87-108, 1997.

Fischer A., A model for the seasonal variations of ve-
getation indices in coarse resolution data and its
inversion to extract crop parameters. Remote Sen-
sing of Environment, {48} 220-230, 1994,

Guérif, M., X. F. Gu and J. P. Guinot, Crop-System
Characterization by Multitemporal spoT Data in
the Scuth-East of France. Int. J. Remote Sens.
13(10): 1843-1851, 1992,

Henderson C.R., Best Linear Unbiased Estimation and
Prediction under a selection model. Biometrics (31},
423-447, 1975,

233



